Gaussian Processes for Machine Learning

نویسنده

  • Dejan Petelin
چکیده

Gaussian process (GP) models form a new, emerging complementary method for nonlinear system identification. The GP model is a probabilistic nonparametric black-box model. It differs from most of the other frequently used black-box identification approaches as it does not try to approximate the modeled system by fitting the parameters of the selected basis functions, but rather searches for the relationship among measured data. Gaussian processes models are closely related to approaches such as Support Vector Machines, and specially Relevance Vector Machines [1]. Because GP model is a Bayesian model, the output of Gaussian process model is a normal distribution, expressed in terms of mean and variance. Mean value represents the most likely output and the variance can be viewed as the measure of its confidence. Obtained variance, which depends on amount of available training data, is important information distinguishing the GP models from other non-bayesian methods. Gaussian process can be used for model identification when data are heavily corrupted with noise, and when there are outliers or gaps in the training data. Another useful attribute of the GP model is the possibility to include various kinds of prior knowledge into the model, e.g. local models, static characteristic, etc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

Gaussian Processes for Machine Learning

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received growing attention in the machine learning community over the past decade. The book provides a long-needed, systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted a...

متن کامل

Assessment of the Efficiency of Climatic factors and geomorphometry in predicting vegetation percentages based on machine learning processes

Introduction: Rangelands are natural ecosystems having large genetic resources. Since plant vegetation is the bed of life on earth and changes under the influence of surrounding environmental elements, using environmental element can highly contribute to estimate vegetation percent more accurately. Two effective elements which can contribute to estimate the vegetation distribution are climatic ...

متن کامل

Tensor Regression Meets Gaussian Processes

Low-rank tensor regression, a new model class that learns high-order correlation from data, has recently received considerable attention. At the same time, Gaussian processes (GP) are well-studied machine learning models for structure learning. In this paper, we demonstrate interesting connections between the two, especially for multi-way data analysis. We show that low-rank tensor regression i...

متن کامل

Machine learning based hyperspectral image analysis: A survey

Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense...

متن کامل

Multiple Kernel Learning and Automatic Subspace Relevance Determination for High-dimensional Neuroimaging Data

Alzheimer’s disease is a major cause of dementia. Its diagnosis requires accurate biomarkers that are sensitive to disease stages. In this respect, we regard probabilistic classification as a method of designing a probabilistic biomarker for disease staging. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010